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𝝏H: Differentiable Holography

Ni Chen,* Congli Wang, and Wolfgang Heidrich

Over the past decade, the field of holography has gained significant ground
due to advances in computational imaging. However, the utilization of
computational tools is hampered by the mismatch between experimental
setups and the conceptual model. Differentiable holography (𝝏H), a novel
framework for automatically self-calibrating experimental imperfections in
inverse holographic imaging, is presented here. The technique is
demonstrated on auto-focused complex field imaging from a single
intensity-only inline hologram.

1. Introduction

Imaging objects of various sizes ranging fromnanometers tomil-
limeters by investigating the object-light interaction is of great
importance in numerous research fields, from physics,[1] mate-
rial science,[2] to biology.[3] Direct quantification of light waves
is challenging when the waves oscillate beyond the speed of
electronic devices, while holography resolves this issue by us-
ing interferometry.[4] However, holographic imaging has been
plagued by a number of challenges that have limited its adoption
for the past century, including the unwanted terms (DC and twin-
image) separation,[5,6] phase unwrapping, and auto-focusing.[7,8]

To mitigate these challenges, computational techniques surpass
multiple variants of holography[9–11] in the possibility of main-
taining a compact inline setup by employing optimization[5,12] or
deep learning.[13,14] Suppose that imaging systems encode the tar-
get object x into holograms ywith a forwardmodel of f (⋅), compu-
tational techniques aim at decoding the holograms to obtain the
target by inverting the forwardmodel to obtain xwith f −1(y) → x′.
Hand-crafted optimization methods rely on relatively sim-

ple and ideal imaging models f (⋅),[5,6,12] which may not accu-
rately represent reality. The simplicity is mainly due to the
need for hand-crafted optimization solvers. On the other hand,
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learning-based methods utilize general-
purpose but opaque black-box mod-
els f (⋅), requiring a large amount of
training data[13,15] or time-consuming
training,[14,16,17] and often lacking
generalization.[13,15] Both approaches
are sensitive to system-specific factors
and unable to compensate for mis-
matches between numerical modeling
and real-world conditions,[18] such as
experimental imperfections (e.g., light
sources, optical alignments, sensor
quantization) and physical interference.

To solve the inverse problem, accurate modeling of these
system imperfections is crucial; otherwise, the quality of
reconstruction will be compromised due to the accumulation of
modeling errors.[18,19] However, as the complexity of modeling
increases, the forward model may not have a simple form, mak-
ing it difficult to solve using existing solvers. This challenge is
further compounded when additional modeling parameters are
introduced, further complicating the problem-solving process.
Inspired by the principles of differentiable imaging,[20] our pro-
posed method, referred to as 𝝏H , incorporates system imperfec-
tions into the imaging model and employs a differentiable opti-
mization technique to overcome the challenging inversion of the
forward model. Specifically, we consider defocusing and illumi-
nation amplitude variation as additional variables to the model.
This approach enables complex field imaging from a single-shot
inline hologram without the need for additional hardware. The
differentiable design of the imaging framework ensures flexibil-
ity and robustness, allowing it to be applied to various setups with
minimal adjustments to the forward model.

2. Experimental Results

The 𝝏H has been verified on four different setups, as shown in
Figure 1. Each of the setups induces inverse imaging with vary-
ing degrees of complexity. In type I of Figure 1a, a plane wave
laser beam is used as the illumination, and the primary factor
thatmakes the forwardmodel inaccurate is the object-camera dis-
tance and the perfection of the plane wave; in type II of Figure 1b,
there are two distances which define the spherical wave illumina-
tion, the light source to object distance zlo and the light source to
camera sensor distance zls in the forward model; in type III of
Figure 1c, the object-camera distance should be extremely small
to maintain a coherence of the LED light source, which makes
it more challenging to separate the twin-image and other terms
in the hologram reconstructions; in type IV of Figure 1d, apart
from the difficulties in III, the fiber bundle also induces addi-
tional noise and errors in the holograms that hinder the imaging.
The performance of the 𝝏H on these configurations is demon-
strated in the following experiments.
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Figure 1. Various inline holography systems that are used for the verification: Inline holography with a) plane wave illumination and b) spherical wave
illumination, c) lensless holography and d) lensless holography with fiber bundle setup. L1: laser light source; L2: LED light source; C: collimator; O:
object; P: pinhole; S: camera sensor; MMF: multi-mode fiber; FB: fiber bundle; OL: objective lens.

In the first experiment, we verified 𝝏H on an object with
ground truth captured by setup I in Figure 1a with a wavelength
of the laser centered at 532 nm. The object was a highly transmit-
ting silica wafer with an etched phase profile that is shown by the
middle image of Figure 2a. The amplitude photo was taken in the
bright field imaging condition, revealing the target’s amplitude
profile, as the result of absorption at the edges of the etched parts.
The ground truth phase image was calculated from the fabricated
sample using the experimental parameters. An inline hologram
(right image of Figure 2a) was captured by an image sensor of
3.45 𝜇m pixel pitch. The reconstructions of 𝝏H with and without
imperfectionmodeling parameters (here, defocus represented by
𝜽 show a significant difference. With 𝜽, the phase target was well

reconstructed, as shown in Figure 2b. The phase value also ap-
proximates the theory one. The right image of Figure 2b shows
the convergence of the axial location z of the target, which is
usually obtained in advance by auto-focusing in the conventional
inverse imaging solver. On the contrary, without 𝜽, the recon-
structed images blur severely, as shown in Figure 2c. The com-
parison of the loss in the right image of Figure 2c, shows that
with 𝜽 included, the loss also converges much better than with-
out it. This is because the forward model is essentially inaccurate
without 𝜽, which causes the convergence to stagnate. Because it
has a high transmittance, the sample used in Figure 2 is typically
treated as a phase-only target.However, in practice, other than the
restricted options of phase-only substances, the misalignment of

Figure 2. Experiment 1: Verification of 𝝏H with the setup of Figure 1a, on a) phase-only sample and b) the reconstructions with and c) without system
parameters. See Section 4.3 for the definition of 𝜽. z is the object to camera distance and a is the magnitude of the illumination light.
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Figure 3. Experiment 2: Verification on a tilia root microscopy samples with the setup in Figure 1a. a) The hologram, b) MP, and c) 𝝏H reconstructions.

the system may cause light absorption in some portions of the
target, making it crucial to consider the target as a more general-
ized complex field.

𝝏H also works well on microscopy samples of realistic phase
and amplitude distributions. Figure 3 shows the imaging of a
tilia root. The multi-plane (MP) phase retrieval result serves as
a reference due to its relatively consistent nature and widespread
usage.[15] Both the amplitude and the phase reconstructed by
𝝏H in Figure 3c match well with the reference reconstruction of
the MP phase retrieval from five holograms in Figure 3b. Except
for the clear background of the reconstructed phase by 𝜕H, the
magnified portions demonstrate that the 𝝏H achieves an even
better resolution. It is crucial to recognize that the performance
of the MP technique heavily depends on the alignment of the
system. Implementing theMP approach requires capturingmul-
tiple images with axis translation, which introduces potential er-
rors during the process. These errorsmay include inaccuracies in
the translation distance and direction, as well as camera rotation.
Figure 4 shows a comparison to state-of-the-art learning-

based complex field imaging with a single-shot inline hologram
based on the physical model: deep compressed object decoder
(DCOD).[14] 𝝏H reconstructed the phase image with a clear back-
ground so that higher frequency withmore detail can be observed
after 25 000 iterations in 46 s on an Nvidia GTX 1080 GPU,
whereas it took 40 min to run 30 000 iterations for DCOD on an
Nvidia Tesla k80 GPU as reported in ref. [14], shown in Table 1.
Besides, DCOD fails in reconstructing some parts of the target,

especially around the image border, whereas 𝝏H reconstructed
the image clearly everywhere. People may claim that other neural
networks can achievemuch faster imaging speed than DCOD.[14]

In fact, there are numerous neural networks that could handle
complex field imaging,[15] phase imaging,[17] or auto-focusing
phase imaging with holograms.[8] It is true that neural networks

Table 1. Computational efficiency compared to DCOD.[14]

Image size [in pixel] Iteration Time cost GPU

DCOD 512 × 512 30 000 ≈40 min Nvidia Tesla k80

𝝏H 512 × 512 2500 ≈36 s Nvidia GTX 1080

1024 × 1024 2500 ≈113 s

outperform optimization in certain aspects, for example, com-
putational speed. However, the inexplicable models trained by
neural networks lack generalization and can hardly be further
manipulated. Additionally, research related to neural networks
driven by data is not practical if a large amount of training data is
not accessible. Although themost recent self-supervised learning
only needs simulation data and can conduct complex field imag-
ing with two or more holograms, it is still unable to handle the
experiment-theory mismatch.[18] On the contrary, the 𝝏H solves
the widespreadmismatch issues, which neither optimization nor
neural networks have yet sufficiently addressed. The ref. [14] was
chosen for comparison because it is the most recent single-shot
complex field imaging technique that uses only one hologram
based on the physical model.
In the preceding experiments, we validated the viability of the

proposed 𝝏H method by conducting comparisons with ground-
truth measurements, as well as existing approaches such as MP
phase retrieval and learning-based methods. Nonetheless, it is
important to recognize that the potential of 𝝏H extends beyond
these comparisons. The interpretable approach of the proposed
𝝏H also enables it to work well on a variety of datasets from vari-
ous setups, as demonstrated in Figures 5 and 6. In Figure 5, a di-
vergent spherical wave was used as illumination. This setup can
achieve a large field of view and reduce interference of reflected

Figure 4. Experiment 3: Verification on a cheek cell sample with the setup in Figure 1c (data from ref. [14]). a) The hologram, b) DCOD, and c)
𝝏H reconstructions.
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Figure 5. Experiment 4: Complex field imaging with the spherical wave illumination setup of Figure 1b. a) The hologram and b) 𝝏H reconstructions.

Figure 6. Experiment 5: Intensity-only object imaging with fiber bundle
setup of Figure 1d (data from ref. [21]). a) The hologram extracted from a
fiber-bundle setup and b) 𝝏H reconstructions.

beams from the object and camera sensor. In this particular ex-
periment, the object under investigation was a wafer containing a
highly transmissive pattern etched onto its surface. The height of
these patterns measured 200 nm, which corresponds to a phase
difference of 0.3174𝜋 when illuminated with a wavelength cen-
tered at 630 nm. The reconstructed patterns exhibited a phase
value of approximately −0.316𝜋, closely matching the intended
design. Regarding Figure 6, the experimental setup employed
a fiber bundle lensless imaging system. The target object used
in this setup was a positive resolution chart, which exhibited no
phase difference and could therefore be considered an amplitude-
only object. The reconstructed images obtained through the
𝝏H technique exhibited clear patterns without any presence of
twin images. In both Figures 6 and 4, the lensless setup utilized
LED light sources, requiring a very short object-camera distance
to maintain the desired coherence of the light sources. However,
this proximity poses a challenge when it comes to eliminating
unwanted terms in the holograms, especially when the object-
camera distance is inaccurately determined. Despite this diffi-
culty, the 𝝏H approach is capable of convincingly reconstructing
clear images even with a roughly estimated distance.

3. Discussions and Conclusion

In conclusion, we have successfully demonstrated the effective-
ness of 𝝏H as amethod for enabling complex field imaging using
a single inline hologram without the need for additional optics.
This innovative approach has the potential to inspire new solu-
tions for compact and in vivo 3D imaging.[21]

When compared to optimization-based compressive
holography[5] and its variants,[6,12,22] 𝝏H offers several distinct

advantages: i) It adheres to a rigorous formulation of holographic
imaging, ensuring a reliable and accurate reconstruction pro-
cess. ii) System imperfections are treated as additional variables
to be optimized, allowing for better compensation and enhanced
imaging performance. iii) The framework is designed to be
differentiable, enabling efficient optimization and allowing for
the incorporation of gradient-based algorithms. iv) 𝝏H is capable
of reconstructing complex fields, providingmore comprehensive
and detailed imaging results. In this work, we have made the
complex field, target location, and illumination light magnitude
differentiable, facilitating the optimization process. Additionally,
the differentiable design of the framework, as described in
Section 4.3, allows for straightforward extensions by introducing
other system parameters or modifying the object scattering
model.[23,24] This flexibility enables the adaptation of 𝝏H for
various types of imaging, broadening its potential applications.
The 𝝏H is capable of handling multiple specific variables

as neural networks. Unlike conventional neural networks[13–17]

that typically learn as black-box models, 𝝏H addresses the
common challenge of experiment-theory mismatch. It provides
a mechanism for incorporating system parameters into the
imaging model, making the method adaptable to various data
types acquired from different experimental setups. Furthermore,
𝝏H does not require an extensive amount of training data. To
the best of our knowledge, this is the first learning-free approach
for complex field imaging using a single-shot inline hologram.
In contrast to traditional holography techniques, 𝝏H offers nu-
merous advantages, such as effectively bridging the gap between
theory and experiment, enabling generalization across different
setups, and not relying on extensive training datasets.
Beyond the demonstrated success in holography, we firmly be-

lieve that the underlying philosophy of differentiable imaging
will lead to significant advancements in imaging with complex
systems or in scenarios that require multiple captures. By either
addressing the theory-experiment gap or developing novel imag-
ing modalities, differentiable imaging has the potential to revo-
lutionize the field and unlock new possibilities for imaging ap-
plications.

4. Method

To showcase the versatility of 𝝏H and its ability to apply to various
scenarios, we initially present the method in a generalized form
in Sections of 4.1 to 4.2. Following that, we offer an example that
incorporates domain-specific parameters, effectively tackling the

Laser Photonics Rev. 2023, 2200828 © 2023 Wiley-VCH GmbH2200828 (4 of 9)
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Algorithm 1 Differentiable holography solver for Equation (1).

function Reconstruct object and system parametersy

Initialize {x0, 𝜽0}; ▹ Initialization

f 0 ← f (⋅,𝜽0); ▹ Initialization of the forward imaging model

while not converged do ▹ Iteration

xk+1,𝜽k+1 ← argmin
x, 𝜽

‖f k(x,𝜽) − y‖2 +∑N
n=1 𝛽nn(x,𝜽); ▹ update with automatic differentiation (Section 4.2)

xk+1 ← Ωx(x
k+1), 𝜽k+1 ← Ω

𝜽
(𝜽k+1); ▹ Projection on physical constraints

f k+1 ← f (⋅, 𝜽k+1); ▹ Imaging model update

return{xK , 𝜽K}; ▹ At final iteration K

complexities associated with field imaging from one single-shot
inline hologram in Section 4.3.

4.1. General Problem Formulation

We approach holographic imaging as an inverse imaging prob-
lem. Unlike traditional computational imagingmethods that em-
ploy an imaging forward model as y = f (x) with the objective of
finding f −1(y) → x, we are considering a different approach here.
Our approach involves a forward model f (x,𝜽) that establishes a
relationship between the intensity-only inline hologram y and the
target object x, while accounting for various unknown parametric
conditions represented by 𝜽. These conditions may include opti-
cal aberrations, the combined impact of the light source and the
sensor on the illumination wave, and other similar factors.
The inversion of this forwardmodel is achieved byminimizing

an error metric with constraints, defined as: i) a least squares fit-
ting to penalize the deviation of the model from measurement
data (i.e., reality); ii) regularization terms (soft constraints) to
favor desirable properties; and iii) hard constraints to guaran-
tee specific physical constraints for the reconstruction to fulfill.
These are collectively written as:

minimize
x, 𝜽

‖f (x,𝜽) − y‖2 + N∑
n=1

𝛽nn(x,𝜽)

subject to x ∈ Ωx, 𝜽 ∈ Ω
𝜽

(1)

where ‖f (x,𝜽) − y‖2 ensures the fidelity of the data,n(⋅) is a col-
lection of soft regularizers, 𝛽n are weights, andΩx,𝜽 are respective
physical constraints.
Given a large number of unknowns, the non-linearity of the

model, and the non-convexity of the constraints, solving Equa-
tion (1) is non-trivial and a naïve solver cannot converge in prac-
tice. Based on the modeling, the proposed differentiable holog-
raphy mitigates these challenges, by adopting differentiable pro-
gramming with reverse automatic differentiation.[25] Specifically,
Equation (1) is solved by projected gradient descent, as shown in
Algorithm 1.
The target x and the system parameters 𝜽 are updated by gradi-

ent descent, while the derivatives are calculated using backward-
mode automatic differentiation, which computes accurate deriva-
tives of a computer program by operating directly on the parame-
ters of interest. Complex numbers are treated as mono variables
with the conjugate Wirtinger derivative. For non-differentiable

functions, approximate gradients are adapted. The detail is pre-
sented in Section 4.2. The physical constraints are employed by
projecting the updated parameters to the physical domain. Reg-
ularizers for complex numbers are applied to amplitude and
phase, respectively, as described in Appendix B.We implemented
themethod in PyTorch, which provides a dynamic computational
graph and allows the forward imaging model to be altered at
run-time, thus allowing for optimizing more than one target. It
is important to note that PyTorch is not the only programming
language available for implementation. Other languages such as
TensorFlow,[26] JAX,[27] or Julia[28] can also be utilized. The se-
lection of a programming language largely relies on the user’s
preferences, familiarity, and the specific needs of the problem. A
projection adaptivemomentumestimation[29] was used as the op-
timizer. Compared to compressive holography,[5,6] a more accu-
rate imaging model with system parameters is modeled instead
of an approximated linear model, and the model differentiability
allows versatility in formulating the inverse problem, as well as
incorporating plug-and-play priors and physical constraints, thus
enable single-shot complex field imaging.

4.2. Automatic Differentiation Optimization

Optimization of the unconstrained part in the algorithm of Equa-
tion (1) is achieved by using gradient descent of the loss function
that relies on iterative-refined optimization. This concerns solv-
ing the following sub-optimization problem

min
x, 𝜽

(x,𝜽) = ‖f (x,𝜽) − y‖2 + N∑
n=1

𝛽nn(x,𝜽) (2)

where at iteration n, given a step size 𝜏, we update xn+1 and 𝜽
n+1

by{
xn+1 ← xn − 𝜏

𝜕

𝜕x

||||x=xn (3a)

𝜃n+1 ← 𝜃n − 𝜏
𝜕

𝜕𝜃

||||𝜃=𝜃n (3b)

To achieve optimization of Equation (3), gradient descent
methods like mirror descent or its variants can be utilized. In
our scenario, we found that the default gradient implementa-
tion in PyTorch, specifically the conjugate Wirtinger derivative,
is sufficient for convergence purposes and offers simplicity. Gen-
erally, the analytic expression of ( 𝜕

𝜕x
, 𝜕
𝜕𝜽
) is derived by writing an

Laser Photonics Rev. 2023, 2200828 © 2023 Wiley-VCH GmbH2200828 (5 of 9)
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explicit expression for the error metric  and symbolically dif-
ferentiating with respect to each of the input parameters. How-
ever, it is tedious and even impossible in our multivariate case,
and the partial derivatives indicate that both x and 𝜽 affect the
error metric locally. Here we apply the reverse-mode automatic
differentiation.[30] Automatic differentiation takes advantage of
the fact that any computer program, regardless of how complex
it may be, executes a series of basic arithmetic operations (ad-
dition, subtraction, multiplication, division, etc.) and basic func-
tions (exp, log, sin, cos, etc.). Applying the chain rule repeatedly to
these operations allows one to automatically compute derivatives
of arbitrary order precisely while using at most a small constant
factor more arithmetic operations than the original program. By
defining the loss function as a composition of elementary opera-
tors with derivatives, we can compute the loss function’s deriva-
tive by chain rule.[31]

Equation (3a) needs to optimize real-valued loss functions with
complex variables, that is, (x) : ℂ → ℝ. Since a non-constant
real-valued function of a complex variable is not complex an-
alytic and, therefore, is not differentiable, a complex-variable
function is usually viewed as a function of the real and imag-
inary components of the complex variable, which may not sat-
isfy the Cauchy–Riemann equations and cannot be addressed
by complex differentiation.[32,33] Besides, the real parametriza-
tion leads to a multivariate optimization problem that is two
times larger than the actual size of the medium and ill-posed.
We adopt the Wirtinger derivative[34,35] and perform a monova-
rietal optimization in the complex domain. By rewriting a real
differentiable function (x) as two variable holomorphic func-
tion(x, x∗), where x = a + jb and x∗ = a − jb, we can simplify the
complex variable update formula of Equation (3a) to only refer to
the conjugate Wirtinger derivative 𝜕

𝜕x∗
as xn+1 = xn − 𝜏

𝜕

𝜕x∗
, where

𝜕

𝜕x∗
= 1

2
( 𝜕

𝜕a
+ j 𝜕

𝜕b
) is given by the classic definition of Wirtinger

calculus.[36]

Automatic calculation of partial derivatives allows us to mod-
ify Equation (2) in a number of ways without alternating the
optimization framework. Instead of having a complex field, x
could alternatively be a composite function of physical proper-
ties such as the refractive index; The misalignment of the illu-
mination angle in optical diffraction tomography[37] or Fourier
ptychography microscopy,[38] or any other imaging system with
multiple captures, could also be considered as system param-
eters of 𝜽; We may also simply incorporate the forward imag-
ing model of f (⋅), which is susceptible to multiple scattering and
could complicate the inverse imaging problem[23,24,39]; Addition-
ally, the least square data term and regularization can be tailored
domain-specifically without taking optimization into account. In
summary, Equation (2) can be constructed as a mix-and-match
approach, allowing us to concentrate on problem-solving rather
than optimization techniques.

4.3. The 𝝏H Formulation of Complex Field Imaging Problem

Solving Equation (1) can be challenging in general. Instead, it is
more desirable to focus on solving specific scenarios tailored to
match the experimental conditions. In inline holography, the for-
ward imaging model is greatly affected by factors of the distance
the wave travels from the object to the sensor and the intensity

Figure 7. Realistic factors (blue color text represented by 𝜽) in a typical
holography system that may affect the modeling. 𝝏Hmodels and retrieves
some of these parameters.

of the illumination. Traditionally, autofocusing techniques[40,41]

have been used before applying inverse optimization solvers,
and intensity compensation has been achieved by utilizing back-
ground images. However, it is crucial to acknowledge that autofo-
cusing and obtaining appropriate background imagesmay not al-
ways be practical or readily accessible, which presents challenges
for conventional hand-crafted optimization and learning-based
methods. In the complex field imaging case where x is a com-
plex transmittance function, denoted as t, the major factors that
affect the forward model are the illumination amplitude a and
the object-camera distance z (auto-focusing). Let 𝜽 = {a, z}, the
problem rephrases as follows

minimize
t, a, z

‖f (a ⋅ t, z) − y‖2 + 𝛽1𝓁1
(t) + 𝛽2TV(t),

subject to |t| ≤ 1, a > 0, z > 0
(4)

where f (⋅) is essentially the free-space wave propagator with
a subsequent interference operator, as defined in Appendix A.
The constraint |t| ≤ 1 enforces sparse energy conservation in the
imaging process.[42] The regularizations of𝓁1 norm𝓁1

(t) and to-
tal variation norm TV(t) are used to favor a sparse and spatially
smooth transmittance function. In this specific case, we devised
intricate regularization techniques, detailed in Appendix B.
By implementing the technique mentioned in the previously

discussed sections, specifically from Sections 4.1 to 4.2, we can
successfully tackle the challenging field imaging problem. How-
ever, it is crucial to acknowledge that in addition to the factors
depicted in Figure 7, 𝜽 might encompass additional elements
to achieve a more realistic imaging formation model for various
imaging objectives.

Appendix A: Forward Model of Inline Holography

Let r = (x, y, z) be a 3D vector in space. An illumination reference beam
ti(r) propagates from the light source to the detector camera plane located
at the original coordinates. In general, the penetration of a wave through
an object is described by a complex transmission function that consists of
amplitude and phase to(r) = e−ao(r)ej𝜙o(r), where ao(r) describes object’s
absorption property, and 𝜙o(r) is the phase delay introduced by the ob-
ject into the incident reference beam. Suppose ts(r) = e−as(r)ej𝜙s(r) is the
complex transmission function of the surrounding medium (when there
is no object that exists), the transmission function with the object in the
surrounding medium is t(r) = e−(as(r)+ao(r))ej(𝜙s(r)+𝜙o(r)) = ts(r)to(r), and
t(r) = ti(r)to(r) if the surrounding medium is a vacuum, that is, ts(r) =
ti(r). We assume the change in irradiance caused by the object is sig-
nificantly smaller than the illumination of the beam, and the transmis-
sion function of the object can be expressed as 1 + to(r), where 1 corre-

Laser Photonics Rev. 2023, 2200828 © 2023 Wiley-VCH GmbH2200828 (6 of 9)
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sponds to the transmittance in the absence of the object and to(r) is a
complex function caused by the presence of the object, so we have t(r) =
ti(r)(1 + to(r)). The captured hologram, that is, the output of the forward
model f (⋅) in Equation (1), thus is f (⋅) = |t(r)⊗ h(r)|2, which is a self-
interference of the propagated 2D scalar field t(r) at z = 0,⊗ is the convo-

lution operator, and h(r) = 1
2𝜋

z
r
1−jkr
r2

exp(jkr) is the point spread function

of the free-space wave propagation.[43] In the case of ti(r) = Ai(r)e
−jkz be-

ing a plane wave, the free-space wave propagation is implemented by the
hybrid Taylor–Rayleigh–Sommerfeld diffraction,[44] while for the spherical

illumination of ti(r) = Ai(r)
e−jkr

r
, there is a magnification of the hologram

defined byM = zls
zlo
, where zls is the light source to camera sensor distance

and zlo is the light source to object distance.[45] Notably, in contrast to
compressive holography,[5,6,22] despite the fact that there is no linear ap-
proximation in the forward imaging model f (⋅), we could also adopt inline
holography systems with plane and spherical wave illuminations.

Appendix B: Regularization for Complex Numbers

In Section 4.2, we introduced a real-valued loss function with complex
variables that we aimed to optimize. Typically, complex numbers are split
into real and imaginary components to fit into the traditional regulariza-
tion techniques used for real-only numbers.[46] However, because the am-
plitude and phase of the complex field are internally related, we developed
a regularization method that applies to both the amplitude and phase of
the complex numbers. Specifically, we utilized the 𝓁1 norm𝓁1

(t) and to-
tal variation normTV(t) for a complex number t, as follows:

𝓁1
(t) = 𝓁1

(|t|) +𝓁1
(∠t)

= ‖1 − |t|‖1 + ‖ sin t‖1 (B1)

whereℑ(⋅) is the imaginary operator and∠(⋅) is the argument of a complex
number. For the amplitude component, we apply the 𝓁1 norm to 1 − |t|
rather than |t| due to the fact that the illumination beam is significantly
larger than the object area in inline holography systems. While for the
phase component, we apply it to | sin t|, since sin t = ℑ(exp(j∠t)) contains
the phase component ∠t. Similarly, the isotropic total variant is defined as

TV(t) = TV(|t|) +TV(∠t)

=
∑
k

√
∇k
x |t|2 + ∇k

y|t|2 + 𝜖2 +
∑
k

√
∇k
x | sin t|2 + ∇k

y| sin t|2 + 𝜖2

(B2)

where 𝜖 > 0 is a small number that is used to avoid a staircase effect,
∇k
x,y(⋅) is a linear operator that performs the finite difference operator along

the x, y directions at the kth pixel location.

Figure C2. 𝝏H reconstruction of the hologram in Figure C1b.

Table C1.Measurement of the reconstructed images in Figure C2.

SSIM NRMSE PSNR

Amplitude 0.9514 0.0330 30.2607

Phase 0.8290 0.1504 29.6130

Appendix C: Numerical Verification

To assess the performance of our approach, we conducted numerical
simulations. In these simulations, we created an image resembling a cell
with a specific refractive index. Figure C1a illustrates the amplitude and
phase resulting from the object immediately after it. We then simulated
the inline hologram of the cell-like image with a plane wave illumination
of a wavelength centered at 532 nm, and the corresponding holograms
located at z =100 μm are shown in Figure C1b. The camera sensor pixel
size was 8 μm.

The reconstructed image in Figure C2 faithfully represents the complex
field, including both the amplitude and phase components. To evaluate
the quality of this reconstruction, we analyze the structural similarity index
(SSIM), normalized root mean square error (NRMSE), and peak signal-to-
noise ratio (PSNR) values, which are provided in Table C1. These metrics,
computed using the scikit-image library,[47] enable a comprehensive com-
parison between the reconstructed image and the ground truth.

To showcase the effectiveness of complex regularizations, we perform
a reconstruction of the hologram depicted in Figure C1b using real-valued
regularizations while maintaining the same weights. The reconstructions
obtained using 𝓁1

and TV in the real domain are shown in Figure C3,
and the assessment metrics are presented in Table C2.

Comparing Figure C2 and Table C1 with Figure C3 and Table C2, it is
evident that the conventional real-valued regularizations exhibit lower per-
formance when contrasted with the complex regularizations.

Figure C1. a) The complex object and b) the hologram used in the simulations.

Laser Photonics Rev. 2023, 2200828 © 2023 Wiley-VCH GmbH2200828 (7 of 9)

 18638899, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/lpor.202200828 by N

i C
hen - U

niversity O
f A

rizona L
ibrary , W

iley O
nline L

ibrary on [07/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.lpr-journal.org


www.advancedsciencenews.com www.lpr-journal.org

Figure C3. Simulation with real-valued regularizations.

Table C2. Measurement of the image reconstructed with real regulations
in Figure C3.

SSIM NRMSE PSNR

Real𝓁1
Amplitude 0.6873 0.1719 15.9293

Phase 0.0703 1.2183 11.4466

RealTV Amplitude 0.6667 0.1148 19.4327

Phase 0.1070 0.9347 13.7488
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